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LIQUID CRYSTALS, 1993, VOL. 14, No. 6, 1801-1830 

Spatial dispersion in chiral liquid crystals 
Effects of higher orders 

by E. DEMIKHOV"? and H. STEGEMEYER 
Institute of Physical Chemistry, University Paderborn, 

POB 1621, D-4790 Paderborn, Germany 

Spatial dispersion effects in chiral liquid crystals are reviewed. New spatial 
dispersion phenomena are observed in the vicinity of the Bragg reflection 
wavelength-an anomaly of the refractive index and an optical anisotropy of the 
cubic blue phases. These effects can be explained by taking into account the spatial 
dispersion correction of the dielectric tensor of the medium of higher orders in the 
ratio of the light wave vector to the structural wave vector of chiral phases. 

1. Introduction 
There is a well known analogy between the optics of chiral liquid crystals and 

common crystalline solids. General consideration of crystallo-optics takes into 
account effects of frequency dispersion of the dielectric tensor as well as effects of its 
spatial dispersion [ 11. Frequency dispersion is combined with intrinsic electronic 
periodical motions in the substance and describes peculiarities of the optical constants 
in the vicinity of electronic absorption bands. By taking into account spatial dispersion, 
we consider the fact that the polarization vector P at a given point is determined by the 
electric field not only at that point, but also in the vicinity of the point. This leads to a 
dependence of the dielectric tensor on the spatial coordinate (wave vector). The spatial 
dispersion contribution is determined by the ratio a/A, where a is the period of the 
system and I is the wavelength of light. Therefore spatial dispersion effects give 
information about the local structure of the medium, which is particularly important 
for liquid crystals. In solid states, spatial dispersion effects are small because a<<A, but 
there is a class of phenomena (girotropy), which can be explained only by taking into 
account the spatial dispersion contribution. 

In phases without a centre of symmetry, such as chiral liquid crystals, the strongest 
spatial dispersion effect is found for their optical activity, which is an effect of first order 
in (a/A). In non-girotropic media, spatial dispersion is of the order of (ail) and therefore 
essentially smaller. Well known spatial dispersion effects for non-girotropic solid 
crystals are the optical anisotropy and the additional light waves of cubic crystals (see 
[l]). In our experiments, we have succeeded in observing spatial dispersion effects of 
higher orders in strongly girotropic liquid crystals. We have investigated perfect 
monodomain samples of blue phases, but this approach is general for all chiral liquid 
crystals. In the case of chiral liquid crystals, spatial dispersion effects can be observed in 
ordered phases (cholesteric and blue phases) [2-31 or in the pretransitional region in 
the isotropic phase, where a means the correlation radius of orientational fluctuations 
c4-91. 
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1802 E. Demikhov and H. Stegemeyer 

The blue phases of liquid crystals are well suited for the investigation of spatial 
dispersion [12-161. Blue phases appear in highly chiral liquid crystals in the vicinity of 
the point of absolute instability of the isotropic liquid. A phase diagram of the blue 
phases (BPs) for pure cholesteryl alkanoates is shown in figure 1 [17]. The appearance 
and methods of investigation of BPs are, in important points, analogous to the solid 
state. But, unlike solid crystals, in the case of blue phases there is only a long or short 
range orientational order. Nothing is known about positional order in the blue phases. 
Consequently, well-shaped single crystals of the BPI and BPII have been grown [ 18- 
211. The reconstruction of the monocrystal shape from the experiments [l8-191 is 
given in figure 2. Crystallographic analysis of observable growth forms of BPI and BPII 
makes it possible to determine their space groups [18-211. Lattice constants of the blue 
phases correspond to the visible region of the spectrum of electromagnetic waves. The 
most powerful experimental methods for the structural investigation of blue phases are 
analogues of the X-ray structure analysis of solid crystals with visible light-the energy 
dispersion method [22-251 and Kossel diagrams [26-281. In contrast to the diffraction 
in the X-ray spectral region, it is possible to get additional structural information in the 
visible region by means of polarization measurements. Figure 3 shows typical energy 
dispersion spectra (in reflection) of blue phases I, I1 and 111. Reflection spectra of BPI 
and BPII consist of several diffraction lines, corresponding to wave vectors of 
reciprocal space with cubic symmetry. Blue phases I and I1 possess three dimensional 
orientational order with cubic space groups O8 (14,32) and O2 (P4,32), respectively. 
Structures of the BPI and BPII have been described in [29-311 as three dimensional 
periodical packing of double twist cylinders (see figure 4). In double twist cylinders, the 
director is rotated around two axes-the axis of the double twist cylinder and the 
radius-vector perpendicular to the cylinder axis. On the boundary between different 
double twist cylinders, defect lines occur, which are positioned in space in accordance 
with the symmetry group. Blue phase I11 reflection spectra show a broad line typical for 
amorphous systems [25,32,33]. The symmetry group describing the local order of 
BPI11 is still under discussion [33-371. Recent theoretical and experimental results give 
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Figure 1. Temperature intervals of the stability of the blue phases versus reciprocal cholesteric 
pitch of pure cholesteryl alkanoates (from P. J. Collings et al. [17]). 
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Figure 3. Energy dispersion spectra for the blue phases of the CN-CC mixture (90: 10). -, 

BPI (85.97"C); ---, BPI1 (86'23°C); .-.-.-., BPI11 (86'33°C) [32]. 
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1804 E. Demikhov and H. Stegemeyer 

*-n 

(4 
Figure 4. (a) Double twist cylinder cross-section perpendicular to its axis; projections of the 

director are shown; (b) double twist cylinder packing and defect line location for the space 
symmetry group (02); (c) analogue for the space group (0'). ((b) and (c )  are taken from the 
paper of E. Dubois-Violette and B. Pansu [31]). 

evidence that BPIII can exhibit an icosahedral structure of the director field [38] with 
the ratio of basic harmonics 1 : 1.17. Figure 5 shows the asymmetrical line shape of the 
Bragg reflection of BPIII in a mirror cell with a shoulder at the short wavelength side 
and the results of fitting of this curve by a sum of two gaussians. The best fitting 
corresponds to a ratio of 1.15 +_ 0.03 of the maximal wavelengths of gaussians. The blue 
phases I and I1 show qualitatively different line shapes. This result contradicts 
conclusions based on measurements of the line shape-electric field dependence in the 
BPIII [35]. 

The relation of the lattice period of the blue phases to the wavelength of light is of 
the order of unity. Such a drastic change in the periodicity of the system gives 
qualitively new possibilities for observation of spatial dispersion effects with respect to  
the solid state. This paper is arranged in the following manner: in 8 2, we review known 
spatial dispersion effects in chiral liquid crystals. In 8 3 we present experimental results 
on spatial dispersion effects of higher orders (cholesteric and blue phases) and give a 
possible theoretical description of it. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
0
9
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Dispersion in chiral liquid crystals 1805 

40 0 50 0 60 0 70 0 
WAVELENGTH / nm 

Selective reflection of BPIII of the mixture consisting of 18 wt% CE1,27 wt% CE2 and 
55 wt% M 18 in a mirror cell with strong boundary conditions. Sample thickness d = 30 pm. 
The solid line is the result of mean-square fitting of experimental data with a sum of two 
gaussians. 

Figure 5.  

2. Optical activity 
2.1. Optical activity in the isotropic liquids of highly chiral liquid crystals 

Unusual physical properties of short pitch chiral liquid crystals in the vicinity of the 
point of absolute instability of the isotropic liquid have been the subject of recent 
theoretical and experimental investigations [4-1 I]. Fundamental interest in these 
phenomena is combined with the fact that the phase transition from the isotropic liquid 
in short pitch liquid crystals is nearly of second order. It is a reflection of the success of 
the Landau-de Gennes theory of phase transitions that it describes both precritical 
phenomena and the properties of the blue phases. In accordance with this general 
concept, long range order in BPI and BPII, as well as short range order in BPIII and the 
isotropic liquid can be described in terms of five structural eigenmodes. The blue phases 
possess a long range order with cubic symmetry (BPI and BPII) or an amorphous 
structure (BPIII). For the blue phases, these modes can be regarded as independent 
structural components of the order parameter. For the isotropic liquid, these modes 
describe fluctuational excitations of local order with helical (conical and spiral mode) 
and nematic structures [lo-1 11. BPIII takes an intermediate position between the 
ordered blue phases I and I1 and the isotropic liquid. The order parameter of BPIII is 
not equal to zero [39] and heat capacity measurements [40] show that the transition 
enthalpy for the phase transition isotropic liquid-BPI11 is larger than those for the 
phase transitions BPIII-BPII, BPII-BPI, BPI-cholesteric. On the other hand, BPIII 
has only short range order and can be considered as a liquid with large correlation 
length (about 2-3 chiral periods) [25]. The phase transition isotropic liquid-BPI11 can 
be regarded as the first example of a liquid-liquid phase transition in one-component 
systems. Hence, investigations of pretransitional phenomena in the isotropic liquids of 
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I806 E. Demikhov and H. Stegemeyer 

highly chiral liquid crystals are very important with regard to understanding the nature 
of this phase transition. 

Measurements of the optical activity give the most instructive information about 
orientational correlations in the isotropic liquid. This is possible because of the fact that 
one can investigate the pure fluctuation contribution, combined with structural modes, 
describing the phase transition to the blue phases. The effect of pretransitional optical 
rotation of the plane of polarization of light has, for the first time, been observed in the 
isotropic liquid [4]. The non-monotonous behaviour of optical activity in the isotropic 
liquid in the vicinity of the phase transition to the blue phases has been found for the 
first time in [5] (see figures 6 and 7). The effect of pretransitional optical activity in the 
isotropic and the smectic A phases of ferroelectric liquid crystals was initially observed 
and theoretically explained in [6] (see figure 8). Further investigations of this effect 
[27-291 have shown the possibility of determining the correlation lengths of the chiral 
fluctuation modes and the coefficients of the Landau-de Gennes theory. 

A theoretical description of the effect of non-monotonous behaviour of the rotation 
of the plane of polarization of light in the isotropic liquid has been developed [lo, 41- 
431. The fitting procedure of [S] has shown excellent agreement between theory and 
experiment. We summarize, in the following, important theoretical relations obtained 
earlier in the case of the pretransitional temperature effects. We present an extension of 
this theory to describe a pressure induced inversion of the gradient of optical activity in 
the isotropic liquid, recently observed in C44-451. Then, we shall illustrate the facilities 
of our fitting procedure using an example of new experimental results from C4.51. In the 
following, we use the notations common for the Landau theory of blue phases. Critical 
properties of the isotropic liquid and structures of the blue phases are described by the 
free energy Landau-de Gennes function. The Landau theory describes, in the case of 
blue phases, the condensation of waves of the orientational order parameter E~~ (the 
anisotropic part of the dielectric tensor) 

T / K  
Figure 6. Optical activity of cholesteryl nonanoate in the isotropic liquid near the phase 

transition into BPI1 (0); specimen thickness d = 2 mm, I = 633 nm, 0-the dependence (t,b 
-+P c51. 
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Dispersion in chiral liquid crystals 1807 

T /  "C 

- Po - Pi>-2 

The Landau-de Gennes free energy can be written as 

with 

F = Fo + F 2 ( E )  + FJE) + F4(&), 

- Po - Pi)-2 

Figure 7. Optical activity in the isotropic liquid of CB15 at wavelengths of 
He-Ne (a) and He-Cd (b) lasers (+), and the temperature dependence of ($ - $,, - gJz, 
(0) from [8] .  

F 3  = B d r S p ( ~ ~ ) ,  

F4 = I d r [ S p ( ~ ' ) ] ~ ,  

s 
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SMECTIC A 
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, J T  3:s 4,OO 4 7  4:8 
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T / K  
Figure 8. Pretransitional optical activity in the isotropic liquid of the ferroelectric compound 

DOBAMBC (L= 633 nm, d = t mm) and in the smectic A phase with a director orientation 
parallel to the light beam (A = 442 nm, d = 0.1 mm) from [6]. 

where a, b, c, p, A are expansion coefficients, a, = a,(T- T*), 6, is the Kronecker symbol 
and q is the wave vector of the helical structure. The order parameter E~~ is Fourier 
developed and then the tensorial coefficients are expanded in terms of irreducible 
representations of the group of rotations around the structural wave vector z 
(Brazovskij et al. [lCbll]; Hornreich and Shtrikman [16]; Belyakov and 
Dmitrienko [l2]) 

T 

m = 2  

m =  - 2  
E'= C ~(z,m)a,, (71 

where om are basic matrices. 
1, k2 describe the long range order in the blue 

phases and the short range order of the chiral type in the isotropic liquid of chiral liquid 
crystals. Modes m = f 1 are called conic spiral modes and m = 2 2 are plane spiral 
modes. The sign of the mode corresponds to the sign of the helix in the cholestedc 
phase. The local structure of the plane spiral mode corresponds to the common plane 
cholesteric spiral (see figure 9). The m = 1 mode describes a conic spiral with an angle of 
45" between the helix axis and the director. The quasi-nematic mode m=O gives no 

The structural modes m=O, 
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Dispersion in chiral liquid crystals 1809 

Figure 9. Structural modes in chiral liquidcrystals: helical mode with plane spiral structure 
(rn = 2), conical spiral structure (rn = 1) and quasi-nematic mode (from [46]). 

contribution to the optical rotation and is important for the interpretation of light 
scattering data, therefore we shall discuss further only the chiral structural modes 
m=1,2. 

In the isotropic liquid, the correlation lengths of the structural modes have different 
temperature dependences 

e,=[ b(1 + c/2b) ] l j 2  

a,( T- 7':) ' 

b 
5 2  = [ ] I 2  a,( T- T;) ' (9) 

where TT, T;  are temperatures of absolute instability of these conic and plane spiral 
modes 

bq2 Tf= T*+ 
4a,( 1 + c/2b)' 

T ;  = T* +--, bq2 
a0 

where T* is temperature of absolute instability of the isotropic liquid. It can be seen 
that TT d T;. The difference between TT and Tf is the difference in the energy spectra 
of these excitations and the energetical preference of the m = 2 mode. These differences 
are the fundamental reasons for the observed anomalies in pretransitional effects. 

Measurements of the optical rotation in the isotropic liquids of chiral liquid crystals 
make it possible to determine the correlation lengths and temperatures 7': and the T;  
[S J. In accordance with theoretical and experimental investigations, the rotation of the 
polarization plane of light in the isotropic liquie of chiral liquid crystals can be 
expressed as a sum of four terms 

$ = $0 +$I + $; + $2, (12) 
where I), is the intrinsic molecular rotation of the plane of polarization of light, is the 
rotation of the polarization plane of light by fluctuations of conic mode (m = l), $; is a 
term, taking into account the cut-off in continuum theory at molecular distances and 
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1810 E. Demikhov and H. Stegemeyer 

t,b2 is the rotation of the plane polarization of light by fluctuations of plane spiral mode 
(m = 2). 

The terms t,bl, +2, t,bi can be expressed in the following form: 

kzqkBT1 
12n24b( 1 + c / Z ~ ) ~  ' 

q1 = - 

where k, = (2nn)/l is the wave vector of the light, q = (4nn)/& is the structural wave 
vector of the cholesteric phase, 1, is a constant characterizing a range of distances where 
the continuous theory is not applicable at normal pressure and E~ = n2 is an average 
dielectric constant. The function F(a,) was calculated by Dmitrienko [8] and 

Using expressions (13H15), the Landau coefficients and the correlation lengths in the 
case of temperature pretransitional effects at constant pressure have been determined 

By changing the pressure in isothermal measurements, a maximum of optical 
rotation in the isotropic liquid of the cholesterogen CE2 (BDH) [4-(2-methylbutyl- 
phenyl) 4-(2-methylbutyl)biphenyl-4-carboxylate] has be recently observed as shown 
in figure 10 [44,45]. The optical activity of CE2 increases with increasing pressure in 
the direction towards the clearing point, runs through a maximum and then decreases. 
The sign of the optical rotation is not changed in the isotropic liquid. All experimental 
points presented in figure 10 belong to the isotropic liquid. To explain this effect, we 
take into account a shift of the temperatures of absolute instability of the fluctuation 
modes and a change of a typical intermolecular distance as a linear function of pressure. 
This is justified, as the effects of pressure on liquid crystals are small and, for example, 
the cholesteric pitch remains approximately constant in these experiments. Pressure 
induced shift of the temperature of absolute instability of the fluctuation modes TZ 
(m = 1,2) can be expressed as follows: 

C81. 

TXP) = c, 0 + PP, (17) 

where TZ,o is the temperature of absolute instability of the mth fluctuation mode at 
normal pressure, p is pressure and P is the expansion coefficient. 

Correlation lengths can be expressed in the form 

where a,, b are coefficients of the Landau free energy [lo, 111 and 
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..- 
I 

V 
E 30 
0 

0 100 200 300 400 500 600 700 

P I bar 
Figure 10. Pressure dependence of optical activity of CE2 for isotherms at 398 K (O) ,  

403 K (D), 413 K (A) ,  423 K ( x ) [45]. 

For the intermolecular distance 1 we use the following expression: 

where a l / d p  is the linear compressibility of the substance. Modification of the m=2 
contribution for the pressure induced effects proceeds by substitution of the correlation 
length t 2 ( p )  into (1 5). Using these substitutions we obtain 

where $; ,o, y are constants, which can be simply calculated from the above expressions. 
Contributions $ and t,hz, which essentially determine the pressure dependence of 

the optical rotation always have opposite signs for the wavelength of measurements 
lying in the visible spectral interval and for values of the cholesteric pitch for cases in 
which the effect of the inversion of sign can be observed [5 ,  6-91 (A, d 350 nm). In [8] it 
has been shown that the plane spiral mode contribution is to be taken into account in 
the temperature interval of about 1°C above the clearing point and falls as c3 far away 
from the phase transition temperature. Pressure dependence of the optical rotation far 
away from the clearing point can be described by a contribution of the conic spiral 
mode. Numerical modelling of equation (22) shows that the maximum in the optical 
rotation can be observed for short pitch cholesteric liquid crystals in the isotropic 
liquid in the vicinity of the clearing point. Energy spectra of structural modes in 
parabolic approximation, obtained in [ 10,111, show an energetical preference for them 
= 2 mode. As the result of this, the correlation length ( of them = 2 fluctuations diverges 
at smaller pressures with respect to the m = 1 mode. Hence, anomalous growth of the 
correlation length of the plane spiral mode in the vicinity of the phase transition 
isotropic liquid-blue phase leads to the occurrence of a maximum of the optical activity 
in the isotropic liquid. Real inversion of the sign of optical rotation does not necessarily 
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1812 E. Demikhov and H. Stegemeyer 

take place. This depends on the relation between the wavelength of measurement and 
the cholesteric pitch. 

To fit the experimental data of figure 9, far away from the phase transition 
temperature in accordance with [17-221, the following formulae have been used [45]: 

(II/-II/o-$;)-2=BoT(~T-p), $;= -0.016~ T+yp, (23) 

where B,, p: and y are fitting parameters. 
Figure 11 shows an excellent linearity of (I) - $,, - $J2 versus p for T= 150"C, 

Bo=70) 5 x lop9 bar-l K-' cm2 deg-2, y = degcm bar-' in a broad interval of 
pressures. Deviation from the linearity in figure 11 takes place in close proximity to the 
clearing point and is caused by the necessity of taking into account the plane spiral 
mode contribution. The pressure interval, where this deviation takes place, increases 
with decreasing temperature of the isothermal regime. A fitting procedure has been 
carried out for several temperatures to obtain the dependence pT( T). 

Figure 12 shows a part of the pressure-temperature phase diagram ( p ,  is clearing 
pressure) and the temperature dependence of pT. The value of pT is linear with Tover a 
broad temperature interval in accordance with [S]. Experimental curves 4 ( p )  cannot be 
linearized by such a procedure for the isotherms in an interval 0°C < (T- T,) < 3"C, 
where T, is the clearing point under normal conditions. In this interval, the plane spiral 
mode contribution should be taken into account. These measurements allow the 
determination of the Landau expansion coefficients and the correlation length by 
analogy with [S]. 

Based on the results of [S] and [45], we can now describe some details of the phase 
transition isotropic liquid-BPIII. During this phase transition, the correlation length 
characterizing the short range order is changed. Maximal values of the fluctuation 
correlation length in the isotropic liquid, obtained in [S] and [45], are about 1 5 s  
200 A. The dimension of the domains in the amorphous BPI11 structure is about 1 pm 
(depending on the chirality of the substance) [25,32]. We can say nothing about the 

0 
0 

N 

,L. ' 1  0.01 2 ..- % I  I 

0.008 1 
I I 
" I  a ** 

0.1 1 

0.000 L I 1 I I , I I 
0 100 200 300 400 500 600 

P I bar 
Figure 11. Pressure dependence of ( i j  - i j o  - for the temperature T =  423 K. 
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600 - 

400 - 
L 
m 
D 
a -  . 
200 

l , I I I I  

390 395 400 405 41 0 41 5 420 425 
TIK 

Figure 12. The temperature dependence of pressure of absolute instability of the conic mode 
fluctuations p :  (0 )  and clearing pressure p ,  (0). 

change of local symmetry during this transition as there is no information about the 
local symmetry of the isotropic liquid in this case. 

Large pretransitional effects of the optical activity have been observed in the 
isotropic liquid of ferroelectric liquid crystals in [6] (see figure 8) and recently repeated 
in [49]. The difference - T, is of the order of 3 K and the plane spiral mode 
contribution can be neglected. The theory of Filev [42] gives a successful description of 
the experimental data over a large temperature interval. 

2.2. Fluctuational optical activity of the smectic A phase in ferroelectric liquid crystals 
In [6], fluctuational optical rotation in the smectic A phase of the ferroelectric 

liquid crystal DOBAMBC was observed (see figure 8). Optical activity was measured 
on S, samples with perfect monodomain texture, with the smectic planes oriented 
parallel to the substrate. Such a geometry enables us to measure the pure optical 
rotation without a birefringence contribution from the highly anisotropic smectic A 
phase. The important feature of the observed effect consists in a change of the sign of 
optical rotation in the smectic A phase with respect to the isotropic liquid. The theory 
of Filev [6] describes this effect as an optical rotation combined with soft mode 
vibrations of the director in the smectic A phase. The Landau-de Gennes free energy 
has the following form: 

where f i  = (B1, B2, 0); a, b,, A are expansion coefficients, qc = (27cJ~~)/A is the wave vector 
of the conical spiral; the zcoordinate is directed along the smectic plane normal. By 
analogy with cholesteric liquid crystals, the tensorial order parameter Qas has the form 

QU&d = AECBAdny + nuBy(q)l, (25) 

where AE is the anisotropy of the dielectric constant. 
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1814 E. Demikhov and H. Stegemeyer 

For the light wave vector koIln we obtain the expression for the anisotropy of the 
dielectric tensor 

where tA  = ( b , / ~ ) ” ~  is the correlation length of fluctuations of the soft mode type in the 
smectic A phase, L,, = ieay,k,/k. An analogous expression for the conical spiral mode 
contribution in the isotropic liquid at the phase transition into the cholesteric (blue) 
phase has the form 

An important condition in this case is ( I,A<< A, lB, which applies in the experiments [6].  
Experimentally observed effects of fluctuation rotation of the plane of polarization 

of light in the isotropic liquid and the smectic A phase of several highly chiral liquid 
crystals was successfully described in the framework of the mean field theory. Landau 
coefficients a,, b as well as the correlation lengths are estimated. 

We can now describe these effects in the language common for the theory of spatial 
dispersion [ 11. In accordance with [43], effects of spatial dispersion on the dielectric 
tensor gi j  will be taken into account as linear and quadratic terms in the wave vector of 
light k 

~ i j ( ~ ,  k) = E~Ao)  + iyijiki + uijirnkikrn. (28) 
We shall use the results of equation (28) only in a quantitative way to draw an analogy 
between the solid state and liquid crystals. The fluctuational optical rotation in the 
isotropic liquid is an effect of first order in ( a i l )  [43], where a in our case is the 
correlation length in the isotropic liquid or the smectic A phase. This conclusion is also 
true for the fluctuation contribution of the plane spiral mode, where the tensor y i j l  is 
proportional to (a/A)2. Higher order contributions are not important in this case. But 
we shall further describe the experimental situation, where quadratic contributions in 
( a l l )  determine the main effect in optically active substances. 

2.3. Structural opticul rotation in cholesteric and blue phases 
The optical activity of cholesteric and blue phases is one of their most important 

properties. It has been extensively investigated experimentally and theoretically and 
has been well known for a long time (for a review see [3] ) .  In this part we shall discuss 
the optical rotation from the point of view of the determination of structural 
parameters of chiral phases which are an important feature of the effect of spatial 
dispersion. We shall concentrate our attention on the more general case of the optical 
activity of blue phases, which includes as a particular case the optical activity of the 
cholesteric phase. 

The optical activity of blue phases has been investigated theoretically and 
experimentally in [39,50-521. We shall describe the order parameter of the blue phases 
as the anisotropic part of the dielectric tensor. To describe the optical activity in chiral 
liquid crystals we must take into account the change in the effective electric field in the 
substance during the process of the Bragg reflection of light. Thus we take the electric 
field vector inside the substance in the form of a Bloch wave [2,39] 

E = E, + E, exp [ik,r - iwt],  
Z f O  
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Dispersion in chiral liquid crystals 1815 

where E, is the electric field amplitude of the incident wave; E, is the amplitude of the 
diffracted wave with wave vector k,; z = 4 4 2 ,  is the structural wave vector of the blue 
phases. The amplitudes E, were found in [39] by solving the Maxwell equations by 
perturbation theory 

where z # 0. 
In [39,54-561 it was shown that the orientational ordering in the blue phases can be 

discribed to a good approximation by only taking into account the plane spiral 
structural mode. This means that we can express the order parameter in the following 
way: 

( 4 i j  = 4 ~ ,  2)mzim,j, (31) 
where ~ ( z ,  2) is the amplitude of the planar mode; m,= 1/J2(m1 - imz). The vectors m,, 
mZ, z/z form a real space right-hand triad. We consider further that the intrinsic 
polarizations of the light propagating in the substance are circular. Under these 
assumptions, a general expression describing the optical rotation in monodomain 
samples of the blue phases and the cholesteric phase per unit length was obtained [39] 

where L is the sample thickness. Equation (32) was adapted [39] for the situations 
which can be realized experimentally: monodomain samples of BPI can be grown only 
with orientation of the wave vectors (1 10) or (200) perpendicular to the substrate. The 
monodomains of BPI1 can be grown with the structural wave vector (100) parallel to 
the sample normal. We can note now that equation (32) is equivalent to the well known 
de Vries formula [2] in the case of a chiral phase with a one dimensional plane spiral. 

We cannot always orient our samples homogeneously. Another useful expression 
describes the optical rotation in polydomain samples of the blue phases. This 
expression, unfortunately, cannot be applied to phases possessing a macroscopic 
birefringence, such as the cholesteric phase, because of a strong light depolarization. In 
accordance with [39] we have 

' L- 3k0D 3 2 ~ ;  ,+o 1 N,,E(Z, 2)Iz 1: (sin x - x cos x -- "') 3 (1 + y2) 4 x dy, (33) 

where x = zD(y + 2/2k,), D is the average domain dimension and N ,  is the number of 
vectors given with a z. 

We shall now illustrate possibilities of this theory by two experiments: optical 
rotation in the monodomain and polydomain samples of cholesteryl nonanoate, and 
optical rotation in polydomain samples of the blue phases of the liquid crystalline 
polymeric material polycholesteryl acrylate (PCA-10) as described in [57]. 

Figure 13 shows the optical rotation in the blue phases of cholesteryl nonanoate at 
constant wavelength for monodomain and polydomain samples. Jumps in the 
experimental points correspond to phase transitions between blue phases. Equation 
(32) shows that optical rotation is proportional to the quadrat of the Fourier 
component of the order parameter ~ ( z ,  2). The temperature dependence of E(Z ,  2) has 
been determined from the optical rotation data in [39] (see figure 14). This correlates 
very well with values of ~ ( z ,  2) obtained from light reflection data for thin samples of the 
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Figure 13. Optical activity of monodomain and polydomain samples of the blue phases of 
cholesteryl nonanoate at i = 633 nm. ( A )  single crystals of the cholesteric phase, (0 )  BPI, 
BPII and BPIII polycrystals and (0) BPI, BPII and BPIII monocrystals [39]. 

blue phases. It is interesting to note that there is the possibility of introducing a more 
universal order parameter [393, which is analogous to the common nematic order 
parameter. This nematic order parameter (see figure 14(b)) shows no jumps at the 
transition temperatures between the blue phases [39,56]. This means that jumps in the 
order parameter at  transition temperatures between the blue phases and the cholesteric 
phase are combined only with different symmetries of these phases, and that locally 
blue phases are analogous to the nematic phase. 

To illustrate the complicated equation (33) graphically, the authors of [39] have 
applied it for the description: (i) of the experiments of Collings on the optical activity of 
BPIII [Sl] (see figure 15), and (ii) of the optical rotation in polydomain samples of the 
blue phase of a chiral side chain polymeric material cholesteryl polyacrylate-10 
(see figure 16) [57]. 

(i) Fitting the experimental results of Collings for the optical rotation of BPIII 
makes it possible to determine the structural correlation length, characterizing 
the short range order in the BPIII. From figure 14 it follows that the theory (33) 
describes the experiments quite well for D % 0.6 pm, which correlates with data 
obtained from reflection experiments in [25]. The discrepancy between theory 
and experiment at smaller wavelengths can be understood by a frequency 
dispersion of the refractive index in the vicinity of the absorption edge. 

(ii) Blue phases in chiral polymeric liquid crystals have been observed in [58-601. 
A fitting of our optical activity dispersion data enabled us to determine for the 
first time the amplitude of the Fourier component E ( z , ~ )  and the domain 
dimension of the blue phase in these materials. For the blue phase in PCA-10 
we obtained ~ ( ~ , 2 ) ~ 0 . 0 1 3 ,  and D/&% 1.5. Comparison of E ( z , ~ )  with analog- 
ous data for the low molecular weight compound cholesteryl nonanoate (CN) 
(see figure 14), in which molecules have a similar chemical structure to the side 
groups of PCA-10, shows that, in the high molecular weight compound, the 
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BPI 

t I I  
I I  
I I  

I i i  

E .I02 , BPI11 

T/"C 
(b)  

Figure 14. (a) Temperature dependence of the Fourier amplitude E(Z, 2) from the ( A )  optical 
activity of monodomain samples of the cholesteric phase; (A)  integral intensity of the 
Bragg diffraction lines of BPI, BPII single crystals in transmission spectra; (0) optical 
activity of BPI and BPII single crystals at 2 = 633 nm; (0 )  the same for polydomain 
samples of BPI and BPII; (b) temperature dependence of the scalar order parameter E( T )  
[39]. Notations of points are as those in (a). The order parameter of the BPIII has been 
calculated from the optical activity data assuming that BPIII is a polydomain texture with 
cubic symmetry group 0'; the icosahedral model gives approximately the same results. 
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I I I I I 
JOO 400 A Inm 

Figure 15. Experimental results of Collings [Sl] (1) on the optical activity in BPIII of 
cholesteryl nonanoate and theoretical curves calculated from (33) ( 2 4 )  with dimension of 
BPIII domains 0.6, 1.2, 0.5 pm respectively. 

I ’  
Figure 16. Theoretical ORD curves for polycrystals of the blue phase of the polymer PCA-10 

with domain dimensions 1 pm (2) and the experimental curve 3. 

order parameter is approximately the same as in CN [39]. The ratio of D/;l for 
polydomain samples in the blue phases of PCA-10 is smaller than in BPIII of 
CN [25,32], which possesses the smallest domains of all blue phases [25]. This 
is typical for polymeric materials and is a manifestation of the influence of the 
main chain. 

In [3,12,39] the effect of linear birefringence An of the blue phases was discussed. 
This effect is combined with the effects of multiple scattering of light. Serious 
consideration [12,52] shows that the eigenpolarizations of light waves propagating 
through the substance are elliptical in the vicinity of the Bragg reflection. In other 
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Dispersion in chiral liquid crystals 1819 

words in the vicinity of selective reflection, a sample of a blue phase can be considered as 
being birefringent. The value of this birefringence was expressed in [12] as 

where I) is optical rotation of the sample, s is the unit vector parallel to the sample 
normal and, L is the sample thickness. But, from the point of view of spatial dispersion, 
this effect is of the same order as the optical rotation and is equal to zero if the optical 
activity is zero. In section 3 we shall discuss other spatial dispersion effects, which do 
not vanish in the case of zero rotation of the plane polarization of light. In concluding, 
the theory of the optical properties of cholesteric liquid crystals describes quite well the 
data on structural optical activity. Comparison of theory and experiment makes it 
possible to determine the amplitudes of the Fourier components of the order 
parameter. Optical rotation measurement is a very sensitive structural method in the 
case of blue phases: to each Fourier component of the order parameter corresponds 
some peculiarities in the optical rotation dispersion curves (see figure 16). Structural 
optical activity is also a spatial dispersion effect of the first order in (a/A). The 
proportionality of optical activity to [43] (a3/A4) is combined with the dependence of 
the tensor y i j l  on the wave vector of light, see equation (28) [39,43]. 

3. Spatial dispersion effects of higher orders 
The investigation of spatial dispersion is a wide area of experimental and theoretical 

work in solid state physics (all important references can be found in [l]). In liquid 
crystals, however, it has been restricted to the optical activity in chiral liquid crystals. 
Spatial dispersion effects of higher orders in a girotropic medium are not known. In our 
experiments we have observed two new effects: an anomaly of the refractive index of the 
blue phases in the vicinity of the Bragg reflection wavelength [61,62] and an optical 
anisotropy of cubic blue phases in the wavelength region of transmission by the 
substance. In a mirror cell used in our investigations, the contribution of the optical 
rotation is clearly equal to zero. Therefore, we believe that we see effects of higher 
orders in (aid)  in optically active media. We shall describe in this chapter our recent 
experiments on blue phases and cholesterics and then discuss these phenomena on the 
basis of the theory developed for spatial dispersion effects in the solid state [l]. 

3.1. Experimental 
The experimental set up for the investigation of electro-optic properties of chiral 

liquid crystals by means of interference microscopy and the construction of the mirror 
cell were realized for the first time by Niggemann [62]. We have measured the refractive 
index dispersion in cholesteric and blue phases of cholesteric-nematic mixtures with 
different optical anisotropy. The first class of mixtures exhibited a large optical 
anisotropy and consisted of 609 and 53.5 wt% of the highly chiral compound CB15 
[4-cyano-4-(2-methylbutyl)biphenyl] (Merck Ltd) and the wide range nematic mixture 
E9 (Merck Ltd). These mixtures exhibit the following phase transitions between liquid- 
crystalline phases of interest (in degrees centigrade): 

Ch 2021 BPI 2066 BPII 20.86 BPI11 21.36 I (609 per cent CB15); 
Ch 29.00 BPI 29.42 BPII 29.52 BPI1 + 129.60 I (53.5 per cent CB15). 

The optical anisotropy An was measured for the cholesteric phase at the phase 
transition Ch-BPI using an AbbC refractometer and was about 0.094 [62]. The 
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halogen lamp beam-splitter 

concentration dependence of this value is relatively small in this range of 
concentrations. 

A second mixture was made of 34mol% of the pure nematic compound CCN 55 
[4,4-di-n-pentyl- 1-bicyclohexyl-4-carbonitrile] (E. Merck), which has a negative sign 
of the dielectric anisotropy in the kHz frequency interval, and the pure, highly chiral 
compound CE2. The optical anisotropy of this mixture, at the phase transition 
cholesteric-BP, was An=0*038 [62]. Phase diagrams of these mixtures are given in 
[48,62]. 

To compensate for the optical rotation of the chiral phases, a mirror cell was used. 
The experimental cell consists of two glass plates with fibre spacers between them. The 
upper glass was covered with a thin transparent I T 0  film and the lower one was an 
aluminium mirror. Both glasses had been coated with polyimide and uniaxially rubbed. 
For our experiments, it was important to have good quality monodomain samples of 
the blue phases. For this purpose, we used the following procedure. An electric field was 
applied to the sample in the temperature interval of the blue phases of such a value that 
no phase transition from the blue phases to other phases was induced; it was held there 
for about 20 min. Then the field was slowly switched off and the orientation of the blue 
phase relaxed to some stable position in accordance with boundary conditions for the 
director field. This procedure makes it possible to fix two axes of an elementary cell of a 
blue phase: one along the sample normal and the second along the rubbing direction. 
The relaxation time for the BPI1 was about one hour and for the BPI 2-3 days. In the 
first stages of the relaxation process in BPI, we have seen the formation of the so-called 
cross-hatching texture, consisting of birefringent domains. This texture has been 
described in previous work on blue phases [13,63,64]. The cross-hatching texture in 

'I compensator 

photomultiplier x-t recorder 

monochromator interference pattern 
1=3 diaphragm 

+ analyzer 

variable POlarizer+ reference mirror 

interference objective 
filter 

function generator 

sample , A'- 77 high power supply 
Figure 17. The experimental set up of the modified Linnik interferometer for measurements of 

selective reflective and refractive index dispersion. 
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Dispersion in chiral liquid crystals 1821 

BPI is caused by deformations occurring as a result of paramorphosis during the phase 
transition from BPII and relaxes to defect free samples after some time. Effects reported 
further in this paper have no relation to the properties of those strained samples. After 
the relaxation process, in our case, we obtained perfect samples of BPI without visually 
observable defects more than 200pm in diameter. The structural wave vector (1 10) of 
the BPI unit cell and the wave vector (100) of the BPII are oriented by this method 
perpendicularly to the substrate. In the case of BPI, the wave vector (110) was oriented 
along the rubbing direction and (001) oriented perpendicularly to it in the plane of 
substrate. The sample thickness was varied between 7 and 30 pm. We have also used 
IT0 coated glasses without rubbed polyimide film. In this case, we have oriented only 
the vertical axis of the elementary cell by the field. That was (1 10) for BPI and (100) for 
BPII. 

Measurements of the refractive index dispersion have been carried out with a Leitz- 
Orthoplan microscope equipped with a Leitz interference reflection illuminator which 
realizes the Linnik interference scheme, and a Jarrel Ash monochromator. Figure 17 
shows the scheme of the experimental set up [61,62]. In the microscope interferometer, 
the polarized or non-polarized light beam from a halogen lamp is divided by a beam 
splitter into two coherent beams: a reference and a testing beam. The testing beam is 
directed perpendicularly to the upper glass surface and, after transmission through the 
substance, it is reflected at the lower plate and interferes with the reference beam, which 
is reflected from the reference mirror. The interference pattern is detected photographi- 
cally or visually in the microscope. By this method, there is no strong contribution to 
the optical path difference caused by the optical activity of the BPs [65]. The absolute 
refractive index n of a substance is determined by the simple formula [66] 

mA 
2d 

n=- 

where m is the relative shift of interference stripes in the substance, with respect to an 
empty cell, in units of the distance between neighbouring stripes, 1 is the wavelength of 
the light, determined by the position of the variable interference filter and d is the 
sample thickness. In our case, we have measured the difference between the refractive 
indices of a liquid crystal and a reference substance with known refractive index (cell 
glue Nordland UV Sealant, n = 1.50). The stripes shift has been measured to within one 
stripe, which gives an accuracy f0-007 in the determination of the refractive index. The 
dispersion change in the refractive index of the glue was smaller than the accuracy ofthe 
measurements. The measurements of the refractive index were carried out on B P  
monodomain samples with monochromatic light obtained by means of a variable 
interference filter with line width of 10 nm at the smallest diaphragms in the collimating 
beam. The temperature of the samples was controlled to 0.002 K. 

3.2. Results 
In the description of our experimental results we would like to consider two 

situations important for understanding some interesting properties of blue phases. 
Figure 18 shows the dependence of the refractive index of the mixture with 60.9 per 

cent of CB15 in E9 on the relative wavelength in the BPI for two sample thicknesses 
30pm (a)  and 16pm (b). We have oriented BPI with the aid of an electric field. This 
means that samples were not oriented azimuthally. The refractive index of the isotropic 
liquid increases with decreasing wavelength because of the frequence dispersion in the 
vicinity of the absorption edge (AM 340 nm). An anomaly in the refractive index of BPI 
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in the transmission region of the mixture in the vicinity of the Bragg wavelength of BPI 
is observed. Refractive index dispersion in BPI in the interval of the measurements is a 
combination of frequency dispersion, analogous to that for the isotropic liquid and a 
new anomaly located at I = I,. The refractive index increases from both sides of the 
selective reflection wavelength 11 -I/I,I 20.02 with IB = 541 nm. Measurements of the 
refractive index were impossible in the small vicinity of IB ,  which will be clarified further 
by the results obtained on defect free samples of BPI. The observed effect does not 
depend on the sample thickness. No dependence of the refractive index on the direction 
of linear polarization in the plane perpendicular to the direction (1 10) has been 
observed. 

Figure 19 shows the dependence of the relative refractive index of BPI in the 
mixture of figure 18, on the wavelength, for two directions of a linear polarization in a 
plane perpendicular to the ( 1  10): [OOl] and [lie]. Orientation of the BPI samples was 
azimuthally and tangentially homogeneous. The sample thickness was 30 pm. We have 
observed a qualitative difference between the dispersion curves for these two directions. 
The (110) refractive index increases in the vicinity of A,, runs through a maximum and 
then decreases in the region of I /&< 1. The (001) refractive index monotonously 
increases on increasing the wavelength for A6 IB. For I >  IB the refractive index in both 
cases decreases with increasing wavelength. For I < I,, an anisotropy of the cubic BPI 
with a positive sign of An = nOOl - n,  10 has been observed. The value of the anisotropy 
of the refractive index increases with increasing wavelength for 1 < I ,  and reaches 
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values of the order of 0.1 in the vicinity of the Bragg wavelength. Measurements with 
other orientations of the polarizer in this plane show that the maximal difference 
between the refractive indices is found for the (001) and (110) directions. For 12 ,IB the 
difference between nool and nlTo is not larger than the accuracy of our measurements. 
Additionally, no sample thickness dependence was observed in this case. Figure 19 
illustrates why the refractive index cannot be measured close to the Bragg reflection 
wavelength in the samples without homogeneous orientation of the azimuthal axes. As 
follows from the experimental section, we have to find the position of the zeroth stripe 
in the microscope field. This is impossible when domains have such strongly different 
refractive indices. In the case of BPI1 we can measure the refractive index dispersion 
close to AB without great difficulty. 

Figure 20 shows the change in the refractive index dispersion curves induced by an 
electric field of small field strength (1 V pm- I), at  which no change in the texture of the 
BPI sample took place. The measurements were carried out on the same samples as in 
figure 19. The type of dependence of the refractive index on the wavelength is analogous 
to that of figure 19. The birefringence, An, of BPI decreases with increasing field, so that 
the anisotropy of the BPI sample can be compensated for, this value depending on the 
wavelength. This result verifies the theoretical prediction [67] that field induced 
differences in the Anool and A n l i o  are negative and that the absolute value of the first 
quantity is larger than that of the second. This figure presents simultaneously the first 
measurement of the field induced anisotropy of BPI. For this field strength, the 
structural birefringence, as presented in figure 19, is equal to the field induced 
birefringence for wavelengths smaller than 5 10 nm. At higher fields, perfect mono- 
domain samples were deformed and defects induced. We can say therefore, that, at 

0.30 

u 

0 i 
0.10 1 I , T-- I 1 I r--i 

460 500 530 580 
WA VELENG T H / ~ ~ L  

Figure 20. The field induced change of the dispersion curves in the BPI for the mixture 
containing 60.9 per cent CB15 in E9. 
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Dispersion in chiral liquid crystals 1825 

higher fields, deformations of the BPI are plastic. In other words, defects are created, 
and after this deformation, the sample cannot be transformed to the initial state by 
switching off the electric field. The change of BPI texture is reversible only after some 
relatively long relaxation time. In this case, deformation birefringence can play a 
sufficient role. Therefore, we have not measured the refractive index at  fields higher 
than the threshold for elastic deformation. 

Figure 21 presents the dependence of the refractive index on the wavelength in the 
BPII for a mixture with 53.5 per cent CB15 in E9 for two linear polarizations of the light 
beam in a plane perpendicular to (100). The samples exhibit no visible defects and were 
tangentially and azimuthally homogeneous. The sample thickness was 18 pm, The 
Bragg reflection wavelength was 2, = 557 nm. Within the accuracy of our measure- 
ments, we see no birefringence of the BPII samples. Measurements of the dependence of 
the refractive index dispersion curves on the azimuthal angle in the plane perpendicular 
to the (100) have similary shown no change in these curves. The refractive index 
dependence in this case is qualitively analogous to the curves with the light wave vector 
k,J( 110) and polarization in the direction (001) in the case of BPI. The refractive index 
decreases with increasing wavelength, running through a maximum near L = 1, and 
then decreases to values approximately equal to the refractive index of the isotropic 
liquid at A % 580 nm. 

Figure 22 shows the refractive index dispersion curves of the BPI11 in a mixture 
with 59.5 per cent of CB15 in E9 in cells with strong boundary conditions. The 
refractive index was measured for two directions of polarization; along and per- 
pendicular to the direction of rubbing. The maximum of the selective reflection was 
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460 500 540 580 620 

WAVELENGTH/nm 
Figure 21. The refractive index dispersion curves of the BPII in a mixture with 53.5 per cent 

CB15 in E9 for two directions of the linear polarizer; the light beam propagating along the 
(100) direction. (0) Polarizer parallel to the direction of rubbing and (*) perpendicular to 
the rubbing direction. 
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w 5 0.10 

0.05 - I , I r - 7  

610 650 
c 
450 400 530 570 

WAVELENGTH /nm 
Figure 22. The refractive index dispersion curves of the BPIII in a mixture with 59.5 per cent 

CB15 for two directions of the linear polarizer: (0) the polarizer parallel to the direction of 
rubbing, (*) perpendicular to the rubbing direction and ( A )  isotropic liquid. 

approximately at IzB = 460 nm. The refractive index in BPIII differs from that of the 
isotropic liquid. This difference increases with decreasing wavelength in the direction of 
the selective reflection wavelength. No birefringence of BPIII was found within the 
accuracy of our measurements. 

Figure 23 shows the refractive index dispersion for the cholesteric phase of a 
mixture with 49.5 per cent of CB15 in E9 in the vicinity of the Bragg reflection 
wavelength AB = 530 nm. The cholesteric samples have been oriented during the 
capillary flow of the substance into the cell. The sample thickness was 30pm. At longer 
wavelengths, we see a difference between the refractive indices of the isotropic liquid 
and the cholesteric phase, which is approximately equal to 0.05 at 580nm. The 
refractive index of the cholesteric phase increases faster with decreasing wavelength 
than that of the isotropic liquid and reaches its maximum value in the vicinity of the 
Bragg reflection wavelength. 

Measurements of the refractive index dispersion in the blue phases of mixtures of 
CCN55 and CE2 have shown no peculiarity in the vicinity of the Bragg wavelength, 
within the accuracy of our measurements. This fact can be explained by a marked 
decrease in the local optical anisotropy in this type of mixture, as compared with 
mixture CB15/E9. 

3.3. Discussion 
In 1971, in two pieces ofexperimental work [68,69], the observation ofa non-trivial 

effect on the optical anisotropy of non-girotropic cubic crystals of silicon (Si) and 
gallium arsenide (GaAs) with low dislocation density was reported. This effect was 
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Figure 23. The refractive index anomaly in the cholesteric (0) and isotropic ( A )  phases of a 

CB15/E9 mixture containing 493 per cent CB15. 

theoretically considered in [l, 7&73] as spatial dispersion of higher orders in @/A). An 
investigation of the effects of higher order has not been carried out experimentally up to 
now for girotropic materials because of the larger effect of the first order optical 
activity. 

Effects of spatial dispersion in chiral liquid crystals have been considered 
theoretically [3,12,43,51,52,74,75]. In these theoretical studies, spatial dispersion 
effects of higher orders in chiral phases have not been discussed. Therefore, we shall try 
to understand the main features of our results in terms of the theory of spatial 
dispersion of higher orders in non-girotropic solid crystals developed by Ginsburg and 
Agranovich [l]. 

Firstly, let us summarize our experimental results 
(1) an anomaly of the refractive index in the blue and cholesteric phases in the 

vicinity of the Bragg reflection wavelength is observed; 
(2) defect free BPI samples are optically anisotropic in the case of propagation of 

light along the direction (1 10); 
(3) defect free BPI1 samples are optically isotropic for light propagating along the 

direction (100). 
It is more convenient to describe the spatial dispersion using a reciprocal tensor of the 
dielectric constants E ;  

In our case first order spatial dispersion effects are equal to zero and we take into 
account second order terms in the development of the reciprocal dielectric constant in 
powers of @/A). By analogy with (28) we take 

(E(o, kj= El-'(o, k)d(w, k)). (35) 

E -  V ' = Sij&; ' (0) + flijl,klk,. (36) 
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To find spatial dispersion corrections of the dielectric constant we must solve the 
Maxwell equations. It is convenient to rewrite these equations in a form taking into 
account the propagation of monochromatic waves through the media 

D = - n(s x B), (37) 

sD=O, (38) 

139) 

(40) 

B = n(o, s)(s x B), 

D = n2(o,  s)[E - s(sE)], 

where s is a unit vector along the direction of the wave vector k of the light beam; B is 
the vector of magnetic induction; D is the vector of electric induction. 

For the crystallographic class 0 (BPI and BPII), the fourth rank tensor pij lm can be 
simplified. In accordance with [73], in this class, the tensor pij lm possesses only three 
independent components PI, 02, p3 

p 1111 .... = p ,  1 p I l J J  .... = p ,  2 p I J l J  .... = p  3’ (41) 
Other components are equal to zero. 

Substituting equation (35) and (36) into equations (37)-(40) in [l] a system of three 
equations for the determination of the vector components D j  for j = 1,2 ,3  has been 
obtained 

+ pn2s;Dj-pn2sjDis:, (43) 

where p=pl - p2 -2p3. Let us now analyse special cases which can be realized by 
experiment for the blue phases. 

(a) Wave vector k of the light beam parallel to the edges of the elementary cubic cell 
(kll(OO1)). The system of equations (37H40) can be simplified 

(44) 

wherej= 1,2 and D3 =O. From (43) it follows that the refractive index of a phase with 
cubic symmetry does not depend on the direction of D. 

(b) Light wave vector parallel to the face diagonal (110) (kll(001)). For linear 
polarization along (001) 

1 1  
n2 E~ 
-_- - +P2n2, 

and for polarization along (110) 

1 1  
---+((P2+#)n2. 
n2 to 

(45) 

In this case, the refractive index of a cubic phase depends on the polarization of the light 
beam. Optical birefringence in the plane perpendicular to the direction (1 10) can be 
expressed as follows: 
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For the birefringence of the non-gyrotropic solid crystal silicon, investigated in [64] the 
value obtained was An z 5 x lop5.  This is approximately four orders of magnitude 
smaller than the effect observed in our work on BPI. 

The measured anisotropy of the blue phases depends on the symmetry of the 
direction of the propagation of light. For BPI, it can be realized experimentally that the 
wave vector of the light is parallel to the face diagonal of the cubic cell (rotation axis of 
second order). An analogous effect should also be observable for BPI1 in the case where 
we could obtain an orientation of the structural wave vector (1 10) perpendicular to the 
substrate. 

This consideration of spatial dispersion effects, based on the theory developed for 
solid crystals can be regarded only as a first illustrative step. The other possibility to 
describe these effects is to take into account m= 1 components of the order parameter in 
equation (30). This possibility had not been investigated until now and deserves further 
attention. 

The authors are grateful to Dr E. Dmitrienko and Professor E. Kats for interesting 
discussions and useful remarks, to Dr H. Baur (Freiburg) for production of the glasses 
for the experimental cells and to Dr E. Niggemann and Dr J. Hollmann for 
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Humboldt Stiftung (FRG) and the Deutsche Forschungsgemeinschaft. 

References 
[l] AGRANOVICH, V. M., and GINSBURG, V. L., 1984, Crystal Optics with Spatial Dispersion, and 

[2] CHANDRASEKHAR, S., 1987, Liquid Crystals (Cambridge University Press), Chap. 4. 
[3] BELYAKOV, V., and DMITRIENKO, V., 1989, Sou. Sci. Rev. A, Phys., 13, 1. 
[4] CHENG, J., and MEYER, R., 1974, Phys. Rev. A, 9, 2744. 
[5] DEMIKHOV, E., and DOLGANOV, V., 1983, J E T P  Lett., 38, 445. 
[6] DEMIKHOV, E., DOLGANOV, V., and FILEV, V., 1983, J E T P  Lett., 37, 361. 
[7] BATTLE, P., MILLER, J., and COLLINGS, P., 1987, Phys. Rev., A, 36, 369. 
[8] DEMIKHOV, E. I., and DOLGANOV, V. K., 1989, Sou. Phys. Crystallogr., 34, 723. 
[9] VANWEERT, F., DEMOL, W., and VAN DAEL, W., 1989, Liq. Crystals, 5, 853. 

Exitons (Springer-Verlag), Chap. 1, p. 4. 

[lo] BRAZOVSKII, S. A., and DMITRIEV, S. G., 1975, Sou. Phys. J E T P ,  42, 497. 
[11] BRAZOVSKII, S. A., and FILEV, V. M., 1978, Sou. Phys. JETP,  48, 573. 
[12] BELYAKOV, V. A., and DMITRIENKO, V. E., 1985, Sou. Phys. Usp., 28, 535. 
[13] STEGEMEYER, H., BLUMEL, T., HILTROP, K., ONUSSEIT, H., and PORSCH, F., 1986, Liq. 

[14] CROOKER, P. P., 1989, Liq. Crystals, 5, 751. 
[15] WRIGHT, D. C., and MERMIN, N. D., 1989, Rev. mod. Phys., 61, 385. 
[16] HORNREICH, R. M., and SHTRICKMAN, S., 1988, Molec. Crystals liq. Crystals, 165, 183. 
[17] BLUMEL, T., COLLINGS, P. J., ONUSSEIT, H., and STEGEMEYER, H., 1985, Chem. Phys. Lett., 

[18] BLUMEL, T., ONUSSEIT, H., and STEGEMEYER, H., 1983, Proceedings of the 13th Freiburger 

[19] BLUMEL, T., and STEGEMEYER, H., 1984, J .  Crystal Growth, 66, 163. 
[20] CLADIS, P. P., PIERANSKI, and JOANIKOT, M., 1984, Phys. Rev. Lett., 52, 542. 
[21] BARBET-MASSIN, R., CLADIS, P. E., and PIERANSKI, P., 1984, Phys. Rev. A, 30, 1161. 
[22] JOHNSON, D. L., FLACK, J. H., and CROOKER, P. P., 1980, Phys. Rev. Lett., 45, 641. 
[23] MEIBOOM, S., and SAMMON, M., 1980, Phys. Rev. Lett., 44, 882. 
[24] KIZEL, V. A., and PROKHOROV, V. V., 1984, Sou. Phys. JETP,  60, 257. 
[25] DEMIKHOV, E., DOLGANOV, V., and KRYLOVA, S. P., 1985, J E T P  Lett., 42, 16. 
[26] CLADIS, P. E., GAREL, T., and PIERANSKI, P., 1986, Phys. Rev. Lett., 57, 2841. 
[27] JEROME, B., PIERANSKI, P., GODEK, V., HARAN, G., and GERMAIN, C., 1988, J .  Phys., Paris, 49, 

Crystals, 1, 3. 

116, 529. 

Arbeitstagung Fliissigkristalle, 22-25 March. 

837. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
0
9
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



1830 Dispersion in chiral liquid crystals 

[28] JEROME B., and PIERANSKI, P., 1989, Liq. Crystals, 5, 799. 
[29] MEIBOOM, S., SETHNA, J. P., ANDERSON, P. W., and BRINKMANN, W. F., 1981, Phys. Rev. 

[30] MEIBOOM, S., SAMMON, M., and BERREMAN, D., 1983, Phys. Rev. A, 28, 3553. 
t31] DUBOIS-VIOLETTE, E., and PANSU, B., 1988, Molec. Crystals liq. Crystals, 165, 151. 
[32] DEMIKHOV, E. I., DOLGANOV, V. K., and KRYLOVA, S. P., 1987, Sou. Phys. J E T P ,  66,998. 
[33] YANG, D. K., CROOKER, P. P., and TANIMOTO, K., 1988, Phys. Rev. A, 37,4001. 
[34] DEMIKHOV, E., and DOLGANOV, V., 1990, Nuouo Cim., 12, 1335. 
[35] KITZEROW, H.-S., CROOKER, P. P., and HEPPKE, G., 1991, Phys. Rev. Lett., 67, 2151. 
[36] FILEV, V. M., 1986, J E T P  Lett., 43, 677. 
[37] HORNREICH, R. M., and STRICKMANN, S., 1986, Phys. Rev. Lett., 56, 1723. 
[38] DEMIKHOV, E., and STEGEMEYER, H., submitted; TREBIN, H. R., FINK, W., and STARK, H., 

1992, The 18th IUPAP Conference on Statistical Physics, Poster, Berlin, p. 218. 
[39] BELYAKOV, V., DEMIKHOV, E., DMITRIENKO, V., and DOLGANOV, V., 1985, Sou. Phys. JETP,  

62, 1173. 
[40] THOEN, J., 1988, Phys. Rev., A, 37, 1754. 
[41] DOLGANOV, V. K., KRYLOVA, S. P., and FILEV, V. M., 1980, Sou. Phys. J E T P ,  57, 1177. 
[42] FILEV, V. M., 1983, J E T P  Lett., 37, 703. 
[43] BENSIMON, D., DOMANY, E., and SHTRICKMAN, S., 1983, Phys. Rev. A, 28, 427. 
[44] HOLLMANN, J., and POLLMANN, P. (unpublished results). 
[45] DEMIKHOV, E., HOLLMANN, J., and POLLMANN, P., 1993, Europhysics Lett., 21, 581. 
[46] TREBIN, H.-R., 1988, Phys. Bl., 44, 221. 
[47] MILLER, J. D., BATTLE, P. R., COLLINGS, P. J., YANG, D. K., and CROOKER, P. P., 1987, Phys. 

[48] SPIER, B., 1990, Thesis, Paderborn, pp. 4&53. 
[49] FRAME, F. C., WALKER, J. L., and COLLINGS, P. J., 1591, Molec. Crystals liq. Crystals, 198, 

[SO] STEGEMEYER, H., and BERGMANN, K., 1980, Springer Series in Chemical Physics, Vol. 11 

[Sl] COLLINGS, P. P., 1984, Phys. Rev. A, 30, 1990. 
[52] BELYAKOV, V. A., DMITRIENKO, V. E., and OSADCHIJ, S. M., 1982, Sou. Phys. J E T P ,  56,322. 
[53] BELYAKOV, V. A., DMITRIENKO, V. E., and ORLOV, V. P., 1980, Sou. Phys. Usp., 22, 63. 
[54] BARBET-MASSIN, R., and PIERANSKI, P., 1984, J .  Phys. Lett., 45, 799. 
[55] BARBET-MASSIN, R., and PIERANSKI, P., 1985, J. Phys., Paris, 46, C3, 
[56] DOLGANOV, V. K., and VOITENKO, E. A., 1990, Sov. Phys. Crystallogr., 34, 265. 
[57] FREIDZON, YA. S., TROPSCHA, YE. G., SHIBAEV, V. P., and PLATE, N. A., 1985, Makromolek 

[SS] DALLEST, J., GILLI, J., and SIXOU, P., 1988, Molec. Crystals liq. Crystals, 155, 571. 
[59] STEGEMEYER, H., ONUSSEIT, H., and FINKELMANN, H., 1989, Makromolec. Chem. rap. 

[60] DEMIKHOV, E. I., FREIDSON, YA. S., and SHIBAEV, V. P., 1989, Vysokomol. Soedin., 31, 3. 
[61] DEMIKHOV, E., NIGGEMANN, E., and STEGEMEYER, H., 1992, Phys. Rev. A, 45, 2380. 
[62] NIGGEMANN, E., 1991, Thesis, Paderborn, p. 15. 
[63] NICASTRO, A., and KEYES, P., 1983, Phys. Rev. A, 27, 421. 
[64] KEYES, P., NICASTRO, A., and MCKINNON, E., 1981, Molec. Crystals liq. Crystals, 67, 715. 
[65] BORN, M., 1972, Optik (Springer-Verlag), p. 403. 
[66] HOHN, E., 1976, Leitz Mitt. Wiss. Tech., 6, 294. 
[67] DMITRIENKO, V., 1989, Liq. Crystals, 5, 847. 
[68] PASTRNAK, J., and VEDAM, K., 1971, Phys. Rev. B, 3, 2567. 
[69] Yu, P. Y., and CARDONA, M., 1971, Solid. St. Commun., 9, 1421. 
[70] GINSBURG, V. L., 1958, Sou. Phys. JETP,  7, 1096. 
[71] LORENTZ, H. A., 1936, Collected Papers, 2, 79; 1936, Ibid., 3, 14 (edited by M. Nijhoff, The 

[72] CHEREPANOV, V. I., and GALISHEV, V. S., 1961, Fiz. tuerd. Tela, 3, 1085. 
[73] TSEKAVA, V. E., 1961, Sou. Phys. Solid State, 3, 847. 
[74] AKOPIAN, R. S., ZELDOVICH, B. YA., and TABIRYAN, N. V., 1982, Sou. Phys. J E T P ,  56,1024. 
[75] BELYAKOV, V. A., and DMITRIENKO, V. A,, 1989, Liq. Crystals, 5, 839. 
1761 NYE, J. F., 1989, Physical Properties of Crystals (Oxford University Press), Chap. XIII. 

Lett., 46, 1216. 

Rev. A, 35, 3959. 

91. 

(Springer-Verlag), p. 161. 

Chem. rap. Commun., 6, 625. 

Commun., 10, 571. 

Hague). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
0
9
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1


